Projects

Corpo

To submit a pproject click here

Active Projects

Name Manager Description
Correlacionando o nível de organização de campos de nuvens convectivas aos ciclos hidrológico e de aerossóis na Amazônia (CLOUDORG) Micael Amore Cecchini A floresta amazônica é um componente-chave do sistema climático da Terra, contribuindo para importantes ciclos biogeoquímicos, hidrológicos e energéticos. Sob um clima global em mudança, a Amazônia provavelmente sofrerá uma mudança de paradigma com consequências significativas para o regime de nuvens e seus feedbacks para o clima regional e global. Dessa forma, o estudo das nuvens convectivas da região se faz essencial para melhores projeções climáticas.

As nuvens convectivas sobre a Amazônia são as mais difíceis de se reproduzir em modelos climáticos. Isso ocorre pois os processos envolvidos são de escalas menores do que nuvens de latitudes altas e ainda não se sabe como as nuvens Amazônicas interagem com poluição atmosférica das queimadas e com as mudanças nas condições termodinâmicas devido ao aquecimento global. Como consequência, a formação e evolução das nuvens convectivas na Amazônia são mal representadas nos modelos climáticos.

A principal maneira de aprimorar os modelos climáticos é através de simulações de altíssima resolução de campos de nuvens. Os modelos de altíssima resolução (e.g. 50 m na horizontal) são capazes de representar com maior fidelidade os processos físicos, termodinâmicos e radiativos que determinam a formação e crescimento de nuvens convectivas. No entanto, dado o alto custo computacional, os domínios reproduzidos em tais modelos são muito menores do que em modelos climáticos. Usualmente os domínios simulados em altíssima resolução são da ordem de 50 km x 50 km na horizontal e 20 km na vertical, representando cerca de 1 pixel de um modelo climático moderno. Sendo assim, deve-se buscar compreender os efeitos macroscópicos (escala de km) dos processos microscópicos (escala de m) que são resolvidos detalhadamente.

Este projeto visa estudar a organização de nuvens convectivas sobre a Amazônia, em particular durante seu crescimento de nuvens rasas (3 km de espessura) para profundas (15 km de espessura). Iremos quantificar o nível de organização e sua evolução no tempo. Simulações com diferentes características de poluição, umidade e cisalhamento vertical do vento jogarão luz sobre os processos mais relevantes para o crescimento das nuvens convectivas. Isto será resumido no índice de organização das nuvens, que será uma forma de guiar novas parametrizações em modelos climáticos.
Estudo de reconexão magnética turbulenta em fluidos astrofísicos Elisabete Maria de Gouveia Dal Pino The process of magnetic reconnection is an important mechanism for heating and accelerating relativistic particles in astrophysical environments, ranging from the solar corona and Earth's magnetosphere to supernova remnants, pulsars, relativistic jets, and the surroundings of black holes and compact sources in general. In this project, we aim to conduct high-resolution three-dimensional magnetohydrodynamic numerical simulations of this process in turbulent media, which are common to all the astrophysical systems mentioned above.O processo de reconexão magnética é um importante mecanismo de aquecimento e aceleração de partículas relativísticas em ambientes astrofísicos, desde a coroa solar e a magnetosfera terrestre, até remanescentes de supernovas, pulsares, jatos relativísticos e o entorno de buracos negros e fontes compactas em geral. Neste Projeto visamos realizar simulações numéricas tridimensionais magnetohidrodinâmicas de altíssima resolução desse processo em meios turbulentos, comuns a todos os sistemas astrofísicos mencionados acima.
Fenômenos dinâmicos em sistemas complexos: aplicação para asteroides, esoplanetas e estrelas. Tatiana Michtchenko O presente projeto abrange as questões relativas a fenômenos relacionados com ressonâncias em sistemas dinâmicos diversos, começando com satélites naturais e asteroides no Sistema Solar, passando para planetas extra-solares e chegando ate o Sol e estrelas em nossa Galáxia. Essas essencialmente incluem:

• Famílias dinâmicas de asteroides diferenciados.
• Caracterização de distribuição de propriedades físicas e dinâmicas dos planetas extra-solares.
• Dinâmica estelar tri-dimensional em galáxias espirais com barra, com ênfase no Sol e suas redondezas.
Radiative Transfer in Circumstellar Environments Alex Cavaliéri Carciofi The BeACOn group at IAG/USP, led by Prof. Carciofi, specializes in modeling circumstellar structures, including disks and outflows, with a focus on Be stars, B[e] supergiants, and massive magnetic stars. The group utilizes the HDUST code, an embarrassingly parallel radiative transfer tool based on the Monte Carlo method. They also employ SPH (Smoothed Particle Hydrodynamics) and other hydrodynamic codes in their research.
Sequential inversion of surface wave dispersion curves and geoid anomalies integrated to shear wave splitting analysis: new constraints on the velocity, attenuation, density, and anisotropy structures of the crust and upper mantle beneath South America. Carlos Alberto Moreno Chaves Integrating different geophysical datasets is essential to obtain improved models of the Earth’s interior heterogeneities, as it helps to restrict the solution space of the properties investigated by each method. Although new models of physical properties in South America have been derived, they still lack resolution, making it difficult to clearly distinguish all geological features and estimate compositional and thermal variations in order to link them with past geodynamic processes responsible for the current tectonic setting of this region. These models are no longer just important for pure research since it has been shown they have, for example, important socioeconomic and environmental applications, such as targeting potential giant metal reserves of base metals, which are essential for the replacement of fossil energy by the so-called clean energy for sustainable development purposes. Thus, in this project, we will use a combination of methodologies to obtain new constraints on the 3D shear wave velocity, attenuation, density, and anisotropic structures of the crust and mantle beneath South America. High-resolution S-wave velocity, attenuation, anisotropy, and density models will be derived from the sequential inversion of phase velocity and amplitude dispersion curves of Rayleigh and Love waves and geoid anomalies. A joint posterior probability density function will be used to express the likelihood of the solution to our problem. We will develop a machine-learning-based algorithm to measure Rayleigh and Love waves amplitude and phase velocity dispersion curves from seismograms recorded by all stations available in South America and model them with Fréchet kernels so that finite-frequency effects are considered. The residual geoid anomalies to be inverted will be obtained by removing the known lithospheric component effects, which mask the signal of density perturbations in the mantle, and modeled using tesseroids to take into account the Earth’s sphericity. We will provide additional constraints to our surface-wave anisotropy model by integrating receiver function studies for analysis of P-wave phases converted to S-wave, and analysis of seismograms for determination of anisotropic parameters associated with the shear wave splitting of WKS, with the use of the traversal component minimization method. The isotropic high-resolution S-wave velocity will be used to derive a new lithosphere thickness model for the whole continent. Based on the improved 3D density structure of the lithosphere obtained in this project, we will numerically calculate the stress field in the crust and lithospheric mantle considering variable rheology in accordance with the different lithological layers in the continental lithosphere and adjacent oceanic plates. Geodetic observations using GNSS time series will be performed and combined with azimuthal seismic anisotropy and numerical simulation of the stress field to provide insight into the balance of forces driving deformation across South America.
The Largest Catalog of Stellar Orbital Parameters Hélio Dotto Perottoni This project aims to create the largest and most comprehensive catalog of stellar orbits, providing a crucial resource for the astronomical community. By combining astrometric data from the Gaia mission with radial velocity measurements from major spectroscopic surveys, we will compile an extensive dataset of orbital parameters for millions of stars. While the catalog will support a wide range of research projects --- such as studying the structure and evolution of the Milky Way and analyzing the dynamical properties of stellar populations --- its primary initial application will be the search for exoplanets of extragalactic origin. Additionally, it will offer valuable insights into the orbital properties of exoplanet-hosting stars, enabling new investigations into planetary systems in different galactic environments. High-performance computing will be essential to efficiently process the vast dataset, ensuring the precision and reliability required for future astronomical studies.

Inactive Projects

Name Manager Description
Probabilistic Classification of Gaia QSO Candidates Using HESIOD Outlier Scores Ramachrisna Teixeira This project aims to produce a list of scores based on an outlier detection system that indicates
if a QSO, resolved or not, could be a good candidate for suffering from a gravitational lens. To
achieve this, we employ HESIOD, a method originally developed for the Gaia GraL lens search
(e.g., Krone-Martins et al., 2018; Delchambre et al., 2019), and subsequently applied in the recent
Gaia Focused Product Release on gravitational lenses (Gaia Collaboration et al., 2024). The
analysis will combine ESA/Gaia data with additional unresolved infrared measurements from
NASA/WISE. A catalog of approximately 3 to 6 million QSOs and QSO candidate images will be
processed, with an expected final output of around 1 million valid lensing scores.
Probabilistic Classification of Gaia QSO Candidates Using HESIOD Outlier Scores Ramachrisna Teixeira This project aims to produce a list of scores based on an outlier detection system that indicates
if a QSO, resolved or not, could be a good candidate for suffering from a gravitational lens. To
achieve this, we employ HESIOD, a method originally developed for the Gaia GraL lens search
(e.g., Krone-Martins et al., 2018; Delchambre et al., 2019), and subsequently applied in the recent
Gaia Focused Product Release on gravitational lenses (Gaia Collaboration et al., 2024). The
analysis will combine ESA/Gaia data with additional unresolved infrared measurements from
NASA/WISE. A catalog of approximately 3 to 6 million QSOs and QSO candidate images will be
processed, with an expected final output of around 1 million valid lensing scores.